skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manin, Fedor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We can view the Lipschitz constant as a height function on the space of maps between two manifolds and ask (as Gromov did nearly 30 years ago) what its ``Morse landscape'' looks like: are there high peaks, deep valleys and mountain passes? A simple and relatively well-studied version of this question: given two points in the same component (homotopic maps), does a path between them (a homotopy) have to pass through maps of much higher Lipschitz constant? Now we also consider similar questions for higher-dimensional cycles in the space. We make this precise using the language of persistent homology and give some first results. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  2. Abstract We analyze an algorithmic question about immersion theory: for which $$m$$, $$n$$, and $$CAT=\textbf{Diff}$$ or $$\textbf{PL}$$ is the question of whether an $$m$$-dimensional $CAT$-manifold is immersible in $$\mathbb{R}^{n}$$ decidable? We show that PL immersibility is decidable in all cases except for codimension 2, whereas smooth immersibility is decidable in all odd codimensions and undecidable in many even codimensions. As a corollary, we show that the smooth embeddability of an $$m$$-manifold with boundary in $$\mathbb{R}^{n}$$ is undecidable when $n-m$ is even and $$11m \geq 10n+1$$. 
    more » « less
  3. Abstract We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $$X_k$$ is the connected sum of k copies of $$\mathbb CP^2$$for$$k \ge 4$$, then we prove that the maximum degree of an L-Lipschitz self-map of $$X_k$$ is between $$C_1 L^4 (\log L)^{-4}$$ and $$C_2 L^4 (\log L)^{-1/2}$$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $$\sim L^n$$. For formal but nonscalable simply connectedn-manifolds, the maximal degree grows roughly like $$L^n (\log L)^{-\theta (1)}$$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $$L^\alpha $$ for some $$\alpha < n$$. 
    more » « less
  4. Given a simplicial pair (X, A), a simplicial complex Y, and a map f:A -> Y, does f have an extension to X? We show that for a fixed Y, this question is algorithmically decidable for all X, A, and f if Y has the rational homotopy type of an H-space. As a corollary, many questions related to bundle structures over a finite complex are likely decidable. Conversely, for all other Y, the question is at least as hard as certain special cases of Hilbert's tenth problem which are known or suspected to be undecidable. 
    more » « less
  5. Abstract The Eden Model in$${\mathbb {R}}^n$$ R n constructs a blob as follows: initially a single unit hypercube is infected, and each second a hypercube adjacent to the infected ones is selected randomly and infected. Manin, Roldán, and Schweinhart investigated the topology of the Eden model in$${\mathbb {R}}^{n}$$ R n by considering the possible shapes which can appear on the boundary. In particular, they give probabilistic lower bounds on the Betti numbers of the Eden model. In this paper, we prove analogous results for the Eden model on any infinite, vertex-transitive, locally finite graph: with high probability as time goes to infinity, every “possible” subgraph (with mild conditions on what “possible” means) occurs on the boundary of the Eden model at least a number of times proportional to an isoperimetric profile of the graph. Using this, we can extend the results about the topology of the Eden model to non-Euclidean spaces, such as hyperbolicn-space and universal covers of certain Riemannian manifolds. 
    more » « less
  6. Spaces with positive weights are those whose rational homotopy type admits a large family of “rescaling” automorphisms. We show that finite complexes with positive weights have many genuine self-maps. We also fix the proofs of some previous related results. 
    more » « less
  7. Abstract The Eden cell growth model is a simple discrete stochastic process which produces a “blob” (aggregation of cells) in $$\mathbb {R}^d$$ R d : start with one cube in the regular grid, and at each time step add a neighboring cube uniformly at random. This process has been used as a model for the growth of aggregations, tumors, and bacterial colonies and the healing of wounds, among other natural processes. Here, we study the topology and local geometry of the resulting structure, establishing asymptotic bounds for Betti numbers. Our main result is that the Betti numbers at timetgrow at a rate between$$t^{(d-1)/d}$$ t ( d - 1 ) / d and$$P_d(t)$$ P d ( t ) , where$$P_d(t)$$ P d ( t ) is the size of the site perimeter. Assuming a widely believed conjecture, this establishes the rate of growth of the Betti numbers in every dimension. We also present the results of computational experiments on finer aspects of the geometry and topology, such as persistent homology and the distribution of shapes of holes. 
    more » « less
  8. What is the maximum number of holes enclosed by a $$d$$-dimensional polyomino built of $$n$$ tiles? Represent this number by $$f_d(n)$$. Recent results show that $$f_2(n)/n$$ converges to $1/2$. We prove that for all $$d \geq 2$$ we have $$f_d(n)/n \to (d-1)/d$$ as $$n$$ goes to infinity. We also construct polyominoes in $$d$$-dimensional tori with the maximal possible number of holes per tile. In our proofs, we use metaphors from error-correcting codes and dynamical systems. 
    more » « less